
Can Feature Information Interaction help for
Information Fusion in Multimedia Problems?

Jana Kludas1, Eric Bruno1, and Stephane Marchand-Maillet1

University of Geneva, Switzerland,
jana.kludas@cui.unige.ch,
http://viper.unige.ch/

Abstract. The article presents the information-theoretic based feature
information interaction, a measure that can describe complex feature de-
pendencies in multivariate settings. According to the theoretical devel-
opment, feature interactions are more accurate than current, bivariate
dependence measures due to their stable and unambiguous definition.
In experiments with artificial and real data we compare the empirical
estimates of correlation, mutual information and 3-way feature inter-
action. We can conclude that feature interactions give a more detailed
and accurate description of data structures that should be exploited for
information fusion in multimedia problems.

1 Introduction

With the rise of the Web 2.0 and its tendency to populate the WWW more and
more with images and videos multimedia related topics became lively discussed
fields of research. In its core there is an essential need for information fusion due
to the multi modal nature of multimedia data. Hence the fusion of multi modal
data (e.g. text and images) has a large impact on algorithms like multimedia
indexing, retrieval and classification, object recognition as well as for data pre-
processing like feature selection or data model development. Information fusion
has established itself as an independent research area over the last decades, but
a general theoretic framework to describe general information fusion systems is
still missing [6]. Up to today the understanding of how fusion works and by what
it is influenced is limited. Probably that is one reason why in multimedia docu-
ment retrieval for web applications the visual component is up to today lacking
behind expectations as can be seen for example in the INEX 2006 [24] and 2007
Multimedia Track , where text-only based runs outperformed all others. As an-
other example can be named the text-based image searches from Google, Yahoo!
and others.

All work done so far on information fusion in multimedia settings can be
divided into two main directions: (1) fusion of independent or complementary
information by assuming or creating independence and (2) fusion of dependent
information by exploiting their statistical dependencies. Both approaches have
been applied in multimedia processing problems equally successfully - for some



tasks the fusion on independent sources outperforms the algorithms based on
dependent sources, on other tasks it is the other way around. Neither of these
approaches is in general superior.

Aligned to the second approach we like to investigate another way of ana-
lyzing input data for multimedia problems based on feature information interac-
tions with the long term goal of information fusion performance improvement.
This multivariate, information theoretic based dependence measure is more ac-
curate in finding the data’s structure e.g. situations, where the independence
assumption is sufficient and where the dependency between the input data is
not negligible.

Information interaction is superior to traditional dependence measures due
to its consistent definition, its global application to the whole feature set and
its capture of linear and higher order statistical dependencies. Considering this
new definition of feature interactions current machine learning algorithms do not
treat the feature’s statistical dependencies properly. Hence the investigation of
feature interactions in multimedia data could help to improve the information
fusion and hence the whole performance of the entailed retrieval and classification
algorithm.

In Section 2 we discuss in more detail state-of-the-art fusion approaches with
independent and dependent input data and their shortcomings. Thereafter we
present in Section 3 the idea of feature interaction information and how it can
help to improve information fusion algorithms. In Section 4 we give the results
of data analysis experiments with artificial and real data, which is followed by
the conclusions in Section 5.

2 Related Work

Our article discuss the problem of information fusion, but most of the related
work can be found in multimedia processing where information fusion is only im-
plicitly treated as one part of the problem. We review some example approaches
and explain when and why they can fail.

In early years of information fusion research scientists fused different sources
by assuming independence between them as in one of the first works on classifier
and decision fusion on fusing neural network outputs [4]. The independence
assumption is still widely used in machine learning as e.g. in the naive Bayes
classifier. Its success is based on its simplicity in calculation and the learned
models, as well as its robustness in estimating the evidence [18]. Approaches
that fuse independent or complementary sources mostly belong to classifier and
decision fusion, where first each modality of the input is treated separately and
then a final decision is based on the single results. Applications that can be
found in literature are for example multimedia retrieval [14, 12], multi modal
object recognition [5], multi-biometrics [7] and video retrieval [15].

Despite its successful application for some problems it seems to fail com-
pletely for others. In [7] it is shown that the violation of the independence
assumption hurts the information fusion performance. So a trade off between



simple and fast calculated results and their accuracy is necessary. That loss in
performance was empirically undermined in [9], where they showed that the
maximum performance improvement in a multi-biometrics application can be
only achieved, if the statistical dependencies between the modalities are taken
into account. Independence assumption based algorithms are also called myopic,
because they treat all attributes as conditionally independent given the class
label [25].

To circumvent the problem of attribute dependencies in data other approaches
try to create independence with the help of linear transformation methods like
principal and independent component analysis (PCA/ICA), factor analysis and
projection pursuit as reviewed in [19]. Unfortunately these methods are not suf-
ficient to eliminate all dependencies in the data, since they target only pairwise
and linear feature dependencies [20]. In addition the authors showed empirically
that their multi modal object recognition problem is affected by higher order
dependency patterns. A similar result was found in [16]. In the multimedia clas-
sification task the Support Vector Machine (SVM) approach using an ICA-based
feature selection was outperformed by a SVM on the original data set. Multi-
media processing approaches that exploit explicitly attribute dependencies fuse
the information preferably at data or feature level. Example applications are
multimedia summarization [1], text and image categorization [3], multi modal
image retrieval [13] and web document retrieval [8]. Those approaches exploit all
some form of attribute dependency at data level like co-occurrence (LSI [28]),
correlation (kCCA [16]) or mutual information. As examples for late fusion,
where classifier dependencies are exploited, can be named copula functions [27]
or nonlinear fusion algorithms based on SVM’s [2].

The most important shortcoming of those algorithms is that they only take
bivariate dependencies into account, even though they work in a multivariate
setting [21]. High level feature relationships such as conditional dependencies
of a feature pair to a third variable e.g. the class label are neglected. For now
there exists no prove that this higher order dependencies have an impact on the
performance of multimedia processing systems, but in [22] their exploitation led
to a performance improvement.

3 Feature Information Interaction

Before the introduction of feature interaction by [17, 18] there was no unifying
definition of feature dependence in multivariate settings, but similar formulae
have emerged independently in other fields from physics to psychology. Fea-
ture information interaction or co-information as it was named in [23] is based
on McGill’s multivariate generalization of Shannon’s mutual information. It de-
scribes the information that is shared by all of k random variables, without
overcounting redundant information in attribute subsets. So it finds irreducible
and unexpected patterns in data that are necessary to learn from data [26].

This general view of attribute interactions could help machine learning algo-
rithms to improve their performance. For example attribute interactions can be



helpful in domains where the lack of expert knowledge hinders the selection of
very informative attributes sets by finding interacting attributes needed for learn-
ing. Another example is the case when the attribute representation is primitive
and attribute relationships are more important than the attributes themselves.
Then similarity based learning algorithms will fail, because the proximity in the
instance space is not related to classification in this domain.

Two levels of interactions can be differentiated: (1) relevant non-linearities
between the input attributes, which are useful in unsupervised learning and (2)
interactions between the input attributes and the indicators or class labels, which
is needed in supervised learning. The k-way interaction information as found in
[17] for a subset Si ⊆ X of all attributes X = {X1, X2, ..., Xn} is defined as:

I(S) = −
∑

T ⊆S
(−1)|S|−|T |H(T ) = I(S \X|X)− I(S \X), X ∈ S (1)

with the entropy defined as:

H(S) = −
∑

ῡ∈S̄
P (ῡ)log2P (ῡ), (2)

where the cartesian product of the sets of attribute values X̄ = X1 × X2 ×
...×Xn is used. The feature interaction for k = 1 reduces to the single entropy,
for k = 2 to the well known mutual information and for k = 3 attributes to
McGill’s multiple mutual information:

I(A; B) = H(A) + H(B)−H(A,B) (3)

I(A; B; C) = I(A; B|C)− I(A; B) (4)
= H(A,B) + H(A,C) + H(B, C) (5)
− H(A)−H(B)−H(C)−H(A,B, C). (6)

According to this definition 3-way information interaction will be only zero
iff A and B are conditionally independent in the context of C, because then
I(A; B|C) = I(A; B). So it gives only the information exclusively shared by
the involved attributes. Information interactions are stable and unambiguous,
since adding new attributes is not changing already existing interactions, but
only adding new ones. Furthermore they are symmetric and undirected between
attribute sets.

It is not to be confused with multi-information as presented in [21]. This
dependence measure is based on the Kullback-Leibler divergence between the
joint probability of Xi, i = 1...M attributes and their marginals:



Imulti(X) =
∑

i

H(Xi)−H(X) =
∑
xi

P (x)log2
P (x)∏
i P (xi)

(7)

Multi information results for i = 2 as well in mutual information, but for
i = 3 attributes it differs from the information interaction:

Imulti(A,B, C) = H(A) + H(B) + H(C)−H(A,B, C). (8)

Hence it can capture higher order statistical dependencies, but is not taking
the pairwise interactions into account. This way multi-information overfits the
k-way mutual information by counting redundant feature dependencies several
times.

Another interesting point about feature information interaction is that it results
in positive and negative values, which represent two different types of feature
interactions. An explanation using synergy and redundancy between attributes
that was given in [17, 18], is presented in the following.

3.1 Positive interaction: Synergy

In case of positive interactions the process benefits from an unexpected synergy
in the data. In statistics this phenomena is called moderating effect and is known
a long time. Synergy occurs when A and B are statistical independent, but get
dependent in the context of C as can be seen in Figure 1(a). In [17] this type of
interaction is described as observational, because the relationships between the
features can only be found by looking at all of them at once. Myopic feature
selections are unable to exploit the synergy in the data. It can be exploited e.g.
for feature selection in supervised learning or for feature construction in the
unsupervised case.

(a) synergy (b) redundancy

Fig. 1. Interaction diagrams of different types of information interactions between A, B
and C



3.2 Negative interaction: Redundancy

Negative interactions occur when attributes partly contribute redundant infor-
mation in the context of another attribute, which leads to a reduction of the
overall dependence. It is shown in Figure 1(b) on behalf of the redundant at-
tributes A,B towards a third attribute C. This type of interaction is also called
representational, because it includes some conditions on all involved attributes.
In supervised learning the negative influence of redundancy can be resolved by
eliminating unneeded redundant attributes, but it could be advantageous in un-
supervised learning in the case of noisy data.

In any case myopic voting function that are based on the independence assump-
tion as well as fusion algorithms that use only local dependencies are confused
by positive and negative feature interactions, which results in decreased infor-
mation fusion performance. In general it is harder to resolve the influence of
negative interactions.

In the following section we compare empirical estimates of correlation, mutual
information and 3-way feature information interaction for artificial and real multi
modal data to draw conclusions about their usefulness as dependence measure
in information fusion.

4 Experiments

For the objective evaluation of the different dependence measures we first con-
ducted tests on simple artificial data sets, where the relations between the input
variables as well as their relations towards the class labels are known.

The first artificial data set is based on an AND combination of 3 binary
variables defining one of the 3 classes. Additional input variables are filled with
random values. Hence the intra-class variables are dependent on each other and
their class label, but independent to the other six input variables.

Figure 2 shows the empirical estimates and histograms of the correlation ma-
trix, the mutual information and the 3-way information interaction respectively
for the unsupervised (features towards features) and the supervised (features to-
wards class labels) case. In the both all dependence measures succeed in finding
the 3 dependent intra-class variables, but with differences in accuracy.

Correlation, for example, is constantly overestimating the dependencies, be-
cause it shows no independence for the inter-class variables. Furthermore the
knowledge of positive or negative correlation seem of no use for information fu-
sion, but only the absolute magnitudes. Mutual information performs similarly
in accuracy as information interaction. So it finds the inter-class independence
of the input variables as well as the dependence of the intra-class variables. Fi-
nally, information interaction is giving the most detailed information about the
data’s structure. For the intra-class variables it results in negative interaction,
which indicates redundancy. The inter-class information interactions are mostly
zero and surprisingly it shows positive interactions, hence synergy, between the
blocks of intra-class variables, where we are not sure yet how to explain this.
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(a) absolute correlation, zero-bar: 0%
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(b) absolute correlation, zero-bar: 0%
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(c) mutual information, zero-bar: 68%
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(e) 3-way interaction (fv3 = 1) zero: 69%
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(f) 3-way interaction (cl = 1) zero: 60%

Fig. 2. Unsupervised (a,c,e) / supervised (b,d,f) case for AND combined artificial data

The second and more interesting artificial data set is based on the AND
data set, but now each input variable is replaced by its XOR combination of
2 variables. Overall it has again 3 classes, where each depends now on 6 input
variables. This new data set is a parity problem, which contains synergy between
the XOR combined variables and their class labels.

Figures 3(a),3(c) and 3(e) show the empirical estimates and the histograms
for the unsupervised case. Correlation finds independence between all variables
except between the parity variables, where it results randomly in positive or
negative correlations. Mutual information as well as the 3-way information in-
teraction results show also only the dependence between the parity variables. So
none of the investigated dependence measures finds all features that one class de-
pends on in the unsupervised setting. We hope to find this hidden dependencies
by investigating higher order information interactions in future work.

The results of the supervised case, that are presented in the Figures 3(b),3(d)
and 3(f), show a clear advantage of information interaction over the other two
dependence measures. Correlation and mutual information do not succeed in
finding even the parity variables, because they are based only on bivariate re-
lationships. Whereas information interaction finds synergy between the parity
variables and detects all dependent variables of a class. As in the unsupervised
case we hope to find the intuitively expected redundancies between the pairs of
parity variables by regarding higher order information interactions.
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(f) 3-way interaction (cl = 1) zero: 94%

Fig. 3. Unsupervised (a,c,e) / supervised (b,d,f) case for OR combined artificial data

To summarize, it can be said that feature information interactions more ac-
curately describe complex dependence structures in data sets by giving their
irreducible patterns. This is especially true for parity problems. Furthermore
it allows to differentiate feature relationships into synergies and redundancies,
which we feel is useful knowledge to exploit in information fusion systems.

For the real data experiments we used the Washington collection, which con-
sists of 886 images annotated with 1 to 10 keywords and grouped into 20 classes.
The extracted feature set consists of the global color and texture histogram
which have 165 and 164 features respectively. Additionally we constructed of
the term frequencies of the keywords a textual feature vector of size 297.

This simple setting is in fact too simple to succeed with a classification or
retrieval task. Intuitively global visual features and a handful of keywords are
insufficient to discriminate any class. So we expect low relationships between the
features in both: the unsupervised case and the supervised.

Ignoring the class labels we first investigated the feature dependencies for
the unsupervised setting. We calculated a sampled version of the 3-way infor-
mation interaction, where each sample consists of k = 3 random features out
of the whole set. Figures 4(a),4(c) and 4(e) give the empirical estimates of the
dependence measures and their histograms. As expected the feature informa-
tion interactions show only little dependence in the feature set. Be aware that
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(f) 3-way interaction (cl = 1) zero: 93%

Fig. 4. Unsupervised (a,c,e) / supervised (b,d,f) case for the Washington collection

the interaction diagrams are scaled between [−0.1, 0.1] compared to [−1, 1] for
correlation and mutual information. So it is clearly visible that the latter two,
both 2-way dependence measures, indicate much higher relationships (in num-
ber and magnitude) between the features. Hence one can state that they also
overestimate the feature’s dependencies for real data sets.

The results for the supervised setting are shown in Figures 4(b),4(d) and
4(f). Again the scale of the information interaction diagrams is set to [−0.1, 0.1]
for visibility reasons. Here the correlation between the features and their class
labels results in high dependencies that are neither supported by the mutual
information nor the 3-way feature information interaction. Mutual information
overestimates as well a little the dependencies.

Experiments that compare end-to-end classification or retrieval results based
on different feature selection or construction algorithms in multimedia prob-
lems have still to be done in future work. Until then the usefulness of feature
information interactions in information fusion stays empirically unproven, but
reasonable given that complex feature relationships can be estimated reliably.

5 Conclusions and Future Work

The article reviews the formal theory and characteristics of feature information
interaction, an information-theoretic dependence measure. Through its stable



and unambiguous definition of feature relationships it can more accurately de-
termine dependencies, because e.g. redundant contributions to the overall rela-
tionships are not overcounted.

Interestingly, information interaction can have positive and negative values,
whereas until now it is not completely clear how to consistently resolve the
negative ones. Positive interactions are synergies, that should be exploited, for
example, by complicating the data model and using the feature’s joint evidence.

Experiments on artificial data, where the feature dependencies are known,
undermine the theoretically claimed superior performance of information inter-
actions over bivariate dependence measures like correlation and mutual informa-
tion especially for parity problems. These findings in the controlled setting fit
also the tests on the real data of the Washington collection. The final prove of
usefulness of feature information interactions for information fusion in classifi-
cation or retrieval has to be done in future work.

Other directions of research will be the utilization of more complex multi-
media data as e.g. the Wikipedia collection and tests with more sophisticated
features like moment-based visual features.
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